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Covariant (hh8)-Deformed Bosonic and
Fermionic Algebras as Contraction Limits of
q-Deformed Ones
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GLh(n) 3 GLh8(m)-covariant (hh8)-bosonic [or (hh8)-fermionic ] algebras
!hh8 6 (n, m) are built in terms of the corresponding Rh and Rh8-matrices by
contracting the GLq(n) 3 GLq 6 1(m)-covariant q-bosonic (or q-fermionic)
algebras !( a )

q 6 (n, m), a 5 1, 2. When using a basis of !( a )
q 6 (n, m) wherein the

annihilation operators are contragredient to the creation ones, this contraction
procedure can be carried out for any n, m values. When employing instead a
basis wherein the annihilation operators, like the creation ones, are irreducible
tensor operators with respect to the dual quantum algebra Uq(gl(n)) ^
Uq 6 1 (gl(m)), a contraction limit only exists for n, m P {1, 2, 4, 6, . . .}. For n 5
2, m 5 1, and n 5 m 5 2, the resulting relations can be expressed in terms of
coupled (anti)commutators (as in the classical case), by using Uh(sl(2)) [instead
of s1(2) ] Clebsch ±Gordan coefficients. Some Uh(sl(2)) rank-1/2 irreducible tensor
operators recently constructed by Aizawa are shown to provide a realization of
!h 6 (2, 1).

1. INTRODUCTION

It is well known that the Lie group GL(2) admits, up to isomorphism,
only two quantum group deformations with central determinant (Kupershmidt,

1992): the standard deformation GLq(2) (Drinfeld, 1987) and the so-called

Jordanian deformation GLh(2) (Demidov et al., 1990; Zakrzewski, 1991). On

the quantum algebra level, the Jordanian deformation Uh(sl(2)) of the classical

enveloping algebra U(sl(2)) was first considered by Ohn (1992), and its

universal 5h-matrix was independently derived by Ballesteros and Herranz
(1996) and by Shariati et al. (1996). The fundamental representation of

Uh(sl(2)), which remains undeformed, was obtained by Ohn (1992), while
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the other finite-dimensional highest weight representations were first studied

by Dobrev (1996). Two-parameter Jordanian deformations GLh, a (2), and

Uh, a (gl(2)) were also introduced by Aghamohammadi (1993), Aneva et al.
(1997), and Parashar (1998).

Two useful tools have been devised for studying the Jordanian deforma-

tions. One is a contraction procedure that allows one to construct the latter

from standard deformations (Aghamohammadi et al., 1995): a similarity

transformation of the defining Rq and Tq-matrices of GLq(2) is performed

using a matrix singular itself in the q ® 1 limit, but in such a way that the
transformed matrices are nonsingular, and yield the defining Rh and Th-

matrices of GLh(2).

Such a contraction technique can be generalized to higher dimensional

quantum groups. It was indeed shown by Alishahiha (1995) that there exist

just two independent singular maps from GLq(3) to new quantum groups,

one trivial and one nontrivial, and that the latter can be extended to GLq(N )
and SPq(2N ) for arbitrary N. This gives rise to GLh(N ) and SPh(2N ), respec-

tively, which are defined by their corresponding Rh-matrix.

The other tool consists of a class of nonlinear invertible maps between

the generators of Uh(sl(2)) and U(sl(2)) (Abdesselam et al., 1998b). Although

there exists an equivalence relation between these maps, they may arise
naturally in different contexts, and may be particularly useful for different

purposes. One of them (Abdesselam et al., 1996) yields an explicit and simple

method for constructing the finite-dimensional irreducible representations

(irreps) of Uh(sl(2)). Furthermore, it provides the decomposition rule for the

tensor product of two such irreps (Aizawa, 1997), an explicit formula for

Uh(sl(2)) Clebsch±Gordan coefficients (CGC) (Van der Jeugt, 1998), as well
as bosonic and fermionic realizations of irreducible tensor operators (ITO)

for Uh(sl(2)) and an extension of the Wigner±Eckart theorem to the latter

(Aizawa, 1998). Another map (Abdesselam et al., 1998a) provides an opera-

tional generalization of the contraction method of Aghamohammadi et al.
(1995) and leads to the construction of Rj1; j2

h and T j
h-matrices of arbitrary

( j1 ^ j2) and j irreps of Uh(sl(2)), respectively, as well as their two-parameter
and/or colored extensions (Chakrabarti and Quesne, 1998). Such a technique

has also been generalized to higher dimensional quantum algebras (Abdes-

selam et al., 1997, 1998a).

In the present paper, we will apply the contraction procedure used by

Alishahiha (1995) to the GLq(n) 3 GLq(m)-covariant q-bosonic algebras

!( a )
q 1 (n, m), a 5 1, 2, and the GLq(n) 3 GLq

2 1(m)-covariant q-fermionic ones
!( a )

q 2 (n, m), which were constructed some years ago by the present author

(Quesne, 1993, 1994) and recently rederived by Fiore (1998) by another

procedure. Such algebras generalize Pusz±Woronowicz GLq(n)-covariant q-

bosonic or q-fermionic algebras (Pusz and Woronowicz, 1989; Pusz, 1989),
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!( a )
q 6 (n), a 5 1, 2, to a tensor product of m Fock spaces. They are generated

by nm pairs of boson- or fermion-like creation and annihilation operators

A8 ²
is , A8is (or AÄ 8 ²

is ), i 5 1, 2, . . . , n, s 5 1, 2, . . . , m, with definite transformation
properties under both GLq(n) and GLq

6 1(m), or Uq(gl(n)) and Uq
6 1(gl(m)).

Our purpose will be twofold. First, we will study under which conditions,

if any, contracting these algebras by using two independent similarity transfor-

mations for GLq(n) and GLq
6 1(m) may lead to GLh(n) 3 GLh8(m)-covariant

(hh8)-bosonic or (hh8)-fermionic algebras !hh8 6 (n, m). Second, in the n 5
2, m 5 1, and n 5 m 5 2 cases, we will establish some relation to the work
of Aizawa (1998) on ITO and of Van der Jeugt (1998) on CGC for Uh(sl(2)).

The algebras !hh8 6 (n, m), whose generators A 1
is , Ais (or AÄ is), i 5 1, 2,

. . . , n, s 5 1, 2, . . . , m, have definite transformation properties under both

GLh(n) and GLh8(m), may be useful in applications of Jordanian quantum

groups in various fields, such as quantum mechanics, condensed matter

physics, or quantum field theory. In such applications, GLh(n) may represent
the symmetry of the physical system, while the index s may label different

particles, crystal sites, or space-time points, respectively. The deformed

(anti)commutation relations satisfied by A 1
is , A is (or AÄ is) may then either

reflect some exotic statistics or be interpreted as those of composite operators

creating and annihilating some quasiparticles or dressed states of bosons
(or fermions).

This paper is organized as follows. Alishahiha’ s contraction procedure

for GLh(N ) is reviewed in Section 2, and various forms of GLq(n) 3
GLq

6 1(m)-covariant q-bosonic (or q-fermionic) algebras are presented in Sec-

tion 3. In Section 4, the technique of Section 2 is applied to such algebras

to obtain GLh(n) 3 GLh8(m)-covariant (hh8)-bosonic [or (hh8)-fermionic]
algebras. The special cases where n 5 2 and m 5 1 or 2 are dealt with in

Section 5. Section 6 contains the conclusion.

2. CONTRACTION OF GLq(N)

The quantum group GLq(N ) is defined (Majid, 1990) as the associative
algebra over C generated by I and the noncommutative elements T 8ij of an

N 3 N matrix T 8 subject to the relations

R8q T 81 T 82 5 T 82 T 81 R8q, T 81 5 T 8 ^ I, T 82 5 I ^ T 8 (2.1)

where

R8q 5 q (
i

eii ^ eii 1 (
i Þ j

eii ^ ejj 1 (q 2 q 2 1) (
i , j

eij ^ eji (2.2)

with i, j running over 1, 2, . . . , N, and eij denoting the N 3 N matrix with
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entry 1 in row i and column j, and zeros everywhere else. It is equipped with

a coproduct, a counit, and an antipode defined by

D (T 8) 5 T 81 ^ Ç T 82, e (T 8) 5 I, S(T 8) 5 T 8 2 1 (2.3)

respectively, where ^ Ç denotes tensor product together with matrix multiplica-
tion. An equivalent form of the RTT relations (2.1) is obtained by replacing

R8q by t R8 2 1
q

s , where t is the twist map, i.e., t (a ^ b) 5 b ^ a. Note that

throughout this paper, q-deformed objects will be denoted by primed quanti-

ties, whereas unprimed ones will represent h-deformed objects.

Let us consider the similarity transformation (Aghamohammadi et al.,
1995; Alishahiha, 1995)

R9q 5 (g 2 1 ^ g 2 1) R8q (g ^ g), T9 5 g 2 1T 8g (2.4)

where g is the N 3 N matrix defined by

g 5 o
i

eii 1 h e1N, h 5 h/(q 2 1) (2.5)

Equations (2.1) and (2.3) simply become

R9q T 91 T 92 5 T 92 T 91 R9q, D (T9) 5 T 91 ^ Ç T 92, e (T9) 5 I, S(T9) 5 T 9 2 1

(2.6)

When q goes to one, although the parameter h in (2.5) becomes singular,

the relations in (2.6) have a definite limit

RhT1T2 5 T2T1Rh , D (T ) 5 T1 ^ Ç T2, e (T ) 5 I, S(T ) 5 T 2 1

(2.7)

where T [ limq ® 1 T 9, and

Rh [ lim
q ® 1

R9q

5 o
ij

eii ^ ejj 1 h F e11 ^ e1N 2 e1N ^ e11 1 e1N ^ eNN 2 eNN ^ e1N

1 2 o
N 2 1

i 5 2
(e1i ^ eiN 2 eiN ^ e1i) G 1 h2e1N ^ e1N (2.8)

The resulting Rh-matrix is triangular, i.e., it is quasitriangular and Rh 5
t R 2 1

h t , showing that the two equivalent forms of RTT relations for GLq(N )

actually have the same contraction limit. Together with I, the elements Tij of

the N 3 N matrix T generate the Jordanian quantum group GLh(N ).
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3. COVARIANT q-BOSONIC AND q-FERMIONIC ALGEBRAS

Let us consider two different copies of the quantum group GLq(N )

considered in Section 2, corresponding to possibly different dimensions n,

m, and parameters q, q s , respectively. Let us denote quantities referring to

GLq(n) by ordinary (primed) letters (R8q, T 8, . . .), and quantities referring to

GLq
s (m) by script (primed) letters (58q s , 78, . . .). The elements T 8ij, i, j 5 1,

2, . . . n, of GLq(n) are assumed to commute with the elements 78st, s, t 5
1, 2, . . . , m, of GLq

s (m). Note that for simplicity’ s sake, we have skipped

the parameters q and q s , which should be appended to T 8 and 78, respectively.

With GLq(n) and GLq
s (m), we can associate the dual (commuting) quantum

algebras Uq(gl(n)) and Uq
s (gl(m)).

Some years ago, it was shown (Quesne, 1993) that q-bosonic creation
and annihilation operators A8 1

is , AÄ 8is, i 5 1, 2, . . . , n, s 5 1, 2, . . . , m, that

are double ITO of rank [10Ç ]n 3 [10Ç ]m and [0Ç 2 1]n 3 [0Ç 2 1]m with respect

to the quantum algebra Uq(gl(n)) 3 Uq(gl(m)), respectively, can be constructed

in terms of standard q-bosonic creation, annihilation, and number operators

a8 1
is , a8is, N 8is, i 5 1, 2, . . . , n, s 5 1, 2,. . . , m (Biedenharn, 1989; Macfar-

lane, 1989; Sun and Fu, 1989), acting in a tensor product Fock space F 5
P n

i 5 1 P m
s 5 1 ^ Fis. Here [10Ç ]n and [0Ç 2 1]n denote n-row Young diagrams, the

dot over 0 meaning that this numeral is repeated as often as necessary. It is

straightforward to extend such a construction to covariant q-fermionic opera-

tors, provided one replaces Uq(gl(m)) by Uq
2 1(gl(m)) and standard q-bosonic

operators by standard q-fermionic ones (Chaichian and Kulish, 1990; Hay-
ashi, 1990).

The annihilation operators A8is, contragredient to A8 1
is , can also be consid-

ered, and are related to the covariant ones AÄ 8is through the equation

AÄ 8is 5 ( 2 1)i 1 s q[n 2 2i 1 1 1 s (m 2 2s 1 1)]/2A8i8s8 (3.1)

where i8 [ n 1 1 2 i, s8 [ m 1 1 2 s, and s 5 1 1 (resp. 2 1) for q-

bosons (resp. q-fermions). In matrix form, Eq. (3.1) can be rewritten as

AÄ 8 5 A8C 8, C 8 5 C8q#8q s (3.2)

where

C8q 5 o
i

( 2 1)n 2 iq 2 (n 2 2i 1 1)/2eii8, #8q s 5 o
s

( 2 1)m 2 sq 2 s (m 2 2s 1 1)/2ess8

(3.3)

As happens in the m 5 1 case for the GLq(n)-covariant q-bosonic or q-

fermionic operators (Pusz and Woronowicz, 1989; Pusz, 1989), there actually

exist two independent ways of constructing A8 1
is and AÄ 8is (or A8is) in terms of

a8 1
is , a8is, N 8is. According to the choice made, the operators A8 1

is and AÄ 8is, or
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A8 1
is and A8is, generate with I 5 I( one of two different Uq(gl(n)) 3

Uq
s (gl(m))-module or GLq(n) 3 GLq

s (m)-comodule algebras, which will be

denoted by !(1)
q s (n, m) and !(2)

q s (n, m). The defining relations of such algebras
can be written in two compact forms, enhancing the transformation properties

of the operators under the quantum group GLq(n) 3 GLq
s (m) or the corres-

ponding quantum algebra Uq(gl(n)) 3 Uq
s (gl(m)), respectively, as well as in

componentwise form using q-(anti)commutators.

In the first compact form, the defining relations of !(1)
q s (n, m) in the

{A8 1
is , A8is} basis read (Quesne, 1994; Fiore, 1998)

R8qA8 1
1 A8 1

2 5 s A8 1
2 A8 1

1 58q s (3.4)

R8qA82A81 5 s A81A8258q s (3.5)

A82A8 1
1 5 I21 1 s R8t1

q 58t1
q s A8 1

1 A82 (3.6)

while those of !(2)
q s (n, m) are given by Eqs. (3.4) and (3.5) and

A81A8 1
2 5 I12 1 s R8t2

q 2 158t2
q 2 s A8 1

2 A81 (3.7)

Here we use the defining R8q-matrix of GLq(n), given in Eq. (2.2), and its

counterpart 58q s for GLq
s (m), as well as a shorthand tensor notation similar

to that of Eq. (2.1), with t1 (resp. t2) denoting transposition in the first (resp.

second) space of the tensor product.

When using instead the {A8 1
is , AÄ 8is} basis of !(1)

q s (n, m) and !(2)
q s (n, m),

Eqs. (3.5)± (3.7) become (Quesne, 1994)

R8qAÄ 81AÄ 82 5 s AÄ 82AÄ 8158q s (3.8)

AÄ 82A8 1
1 5 C812 1 s A8 1

1 AÄ 82 RÄ 8 2 1
q 5Ä 8 2 1

q
s (3.9)

and

AÄ 81A8 1
2 5 C821 1 s A8 1

2 AÄ 81RÄ 8q5Ä 8q s (3.10)

where

RÄ 8q [ C8 2 1
q,1 (R8 2 1

q )t1C8q,1 5 C8 2 1
q,2 (R8t2

q ) 2 1C8q,2 (3.11)

and similarly for 5Ä 8q s . Note that one can go from !(1)
q s (n, m) to !(2)

q s (n, m)

by making the substitutions R8q ® t R8 2 1
q t , 58q s ® t 58 2 1

q
s t .

In either form (3.4)±(3.6) [resp. (3.4), (3.5), (3.7)] or (3.4), (3.8), (3.9)

[resp. (3.4), (3.8), (3.10)], it is easy to see that !(1)
q s (n, m) [resp.

!(2)
q s (n, m)] is a GLq(n) 3 GLq

s (m)-comodule algebra. The transformation

w 8(A8 1 ) 5 A8 1 T 878, w 8(A8) 5 T 8 2 1 78 2 1A8 (3.12)
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or

w 8(A8 1 ) 5 A8 1 T 878, w 8(AÄ 8) 5 AÄ 8TÄ 87Ä 8 (3.13)

where T 8ij P GLq(n), 78st P GLq
s (m), TÄ 8 5 C8 2 1

q (T 8 2 1)tC8q, and 7Ä 8 5
#8 2 1

q
s (78 2 1)t#8q s , indeed leaves the defining equations invariant, while being

consistent with the GLq(n) 3 GLq
s (m) coalgebra structure, as given in Eq.

(2.3), and its counterpart for GLq
s (m).

For m 5 1, one gets 58q s 5 q s , #8q s 5 1, 5Ä 8q s 5 q 2 s , so that the defining

relations of !(1)
q s (n, 1) and !(2)

q s (n, 1) coincide with those of the two indepen-

dent Pusz±Woronowicz algebras (Pusz and Woronowicz, 1989; Pusz, 1989).

The second compact form uses coupled q-(anti)commutators, defined
by (Quesne, 1993)

[T [ l 1]n [ l 8
1]m, U [ l 2 ]n[ l 8

2]m} [ L ]n[ L 8]m
(M)n(M8)m

q a

5 [T [ l 1]n[ l 8
1 ]m 3 U [ l 2]n[ l 8

2 ]m][ L ]n[ L 8]m
(M)n(M8)m

2 s ( 2 1) e q a [U [ l 2]n[ l 8
2 ]m 3 T [ l 1]n[ l 8

1 ]m][ L ]n [ L 8]m
(M)n(M8)m

(3.14)

Here the left-hand side is a coupled q-commutator (resp. q-anticommutator)
for s 5 1 1 (resp. 2 1), T [ l 1 ]n[ l 8

1]m and U [ l 2 ]n[ l 8
2]m denote two double ITOs of

rank [ l 1]n 3 [ l 81]m and [ l 2]n 3 [ l 82]m with respect to Uq(gl(n)) 3
Uq

s (gl(m)), respectively, their tensor product of rank [ L ]n 3 [ L 8]m is

defined by

[T [ l 1]n [ l 8
1]m 3 U [ l 2]n [ l 8

2]m][ L ]n[ L 8]m
(M)n(M8)m

5 o
( m 1)n( m 8

1)m( m 2)n( m 8
2)m

^ [ l 1]n( m 1)n , [ l 2]n( m 2)n ) [ L ]n(Mn & q

3 ^ [ l 81]m( m 81)m , [ l 82]m( m 82)m ) [ L 8]m(M 8)m & q
s T [ l 1]n[ l 8

1 ]m
( m 1)n( m 81)m

U [ l 2]n [ l 8
2]m

( m 2)n( m 82)m
(3.15)

and the phase factor e is given by

e 5 f ([ l 1]n) 1 f ([ l 2]n) 2 f ([ L ]n) 1 f ([ l 81]m)

1 f ([ l 82]m) 2 f ([ L 8]m) (3.16)

f ([ l 1]n) 5
1

2 o
n

i 5 1

(n 1 1 2 2i) l 1i,

f ([ l 81]m) 5
1

2 o
m

s 5 1

(m 1 1 2 2s) l 81s (3.17)

In Eq. (3.15), ^ , ) & q and ^ , ) & q
s denote Uq(gl(n)) and Uq

s (gl(m)) CGC (Bieden-

harn, 1990), respectively, and we have assumed that the couplings are multi-
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plicity-free [which is the case for the generators of !(1)
q s (n, m) and

!(2)
q s (n, m)].

Such a compact form only exists for the {A8 1
is , AÄ 8is} basis, since A8 1

is

and AÄ 8is (but not A8is) have a definite rank with respect to Uq(gl(n)) 3
Uq

s (gl(m)), namely [10Ç ]n 3 [10Ç ]m and [0Ç 2 1]n 3 [0Ç 2 1]m , respectively.

For !(1)
q s (n, m), one finds (Quesne, 1993)

[A8 1 , A8 1 ] [20Ç ]n[120Ç ]m 5 [A8 1 , A8 1 ] [120Ç ]n[20Ç ]m 5 0 (3.18)

[AÄ 8, AÄ 8][0Ç 2 2]n[0Ç ( 2 1)2]m 5 [AÄ 8, AÄ 8][0Ç ( 2 1)2]n[0Ç 2 2]m 5 0 (3.19)

in the q-bosonic case ( s 5 1 1), or

{A8 1 , A8 1 }[20Ç ]n[20Ç ]m 5 {A8 1 , A8 1 } [120Ç ]n[120Ç ]m 5 0 (3.20)

{AÄ 8, AÄ 8} [0Ç 2 2]n[0Ç 2 2]m 5 {AÄ 8, AÄ 8}[0Ç ( 2 1)2 ]n[0Ç ( 2 1)2 ]m 5 0 (3.21)

in the q-fermionic one ( s 5 2 1), and

[AÄ 8, A8 1 } [10Ç 2 1]n[10Ç 2 1]m 5 [AÄ 8, A8 1 }[10Ç 2 1]n[0Ç ]m
q

s m

5 [AÄ 8, A8 1 } [0Ç ]n[10Ç 2 1]m
q

n 5 0 (3.22)

[AÄ 8, A8 1 }[0Ç ]n [0Ç ]m
q

n 1 s m 5 ! [n]q[m]qI (3.23)

in both cases ( s 5 6 1). For simplicity’ s sake, we have not written the
Uq(gl(n)) 3 Uq

s (gl(m)) irrep row labels (M1)n(M2)m. As usual, q-numbers are

defined by [x]q [ (qx 2 q 2 x)/(q 2 q 2 1). For !(2)
q s (n, m), Eqs. (3.18) ±(3.23)

remain valid except for the substitution q ® q 2 1 in the lower subscripts in

Eqs. (3.22) and (3.23).

By using the explicit form of the R8q and 58q s matrix elements given in

Eq. (2.2), or the explicit values of the Uq(gl(n)) and Uq
s (gl(m)) CGC (Biedenh-

arn, 1990) together with Eq. (3.1), Eqs. (3.4)±(3.6), or (3.18)±(3.23), for

!(1)
q s (n, m) can be rewritten in componentwise form. The results read

(Quesne, 1993)

{A8 1
is , A8 1

is } 5 0 (3.24)

in the q-fermionic case ( s 5 2 1), and

[A8 1
is , A8 1

it }q
2 1 5 0, s , t (3.25)

[A8 1
is , A8 1

js }q
2 s 5 0, i , j (3.26)

[A8 1
is , A8 1

jt } 5 0, i . j, s , t (3.27)

[A8 1
is , A8 1

jt } 5 2 (q 2 q 2 1)A8 1
js A8 1

it , i , j, s , t (3.28)

[A8is, A8 1
jt } 5 0, i Þ j, s Þ t (3.29)



Covariant (hh8)-Deformed Bosonic and Fermionic Algebras 1913

[A8is, A8 1
js }q s 5 (q 2 q 2 1) o

s 2 1

t 5 1

A8 1
jt A8it, i Þ j (3.30)

[A8is, A8 1
it }q 5 s (q 2 q 2 1) o

i 2 1

j 5 1
A8 1

jt A8js, s Þ t (3.31)

[A8is, A8 1
is }q

1 1 s 5 I 1 (q2 s 2 1) o
i 2 1

j 5 1

A8 1
js A8js 1 (q2 2 1) o

s 2 1

t 5 1

A8 1
it A8it

1 (q 2 q 2 1)2 o
i 2 1

j 5 1
o
s 2 1

t 5 1

A8 1
jt A8jt (3.32)

in both q-bosonic and q-fermionic cases ( s 5 6 1), together with the Hermitian

conjugates of Eqs. (3.24) ±(3.28) (for real q). Here, for q-bosons (resp. q-

fermions), [ , } denotes a commutator (resp. anticommutator), and [ , }q
a a

q-commutator (resp. q-anticommutator), i.e., [A, B}q
a [ AB 2 s q a BA.

For !(2)
q s (n, m), Eqs. (3.24)±(3.29) remain unchanged, whereas Eqs.

(3.30)±(3.32) are replaced by

[A8is, A8 1
js }q

2 s 5 2 (q 2 q 2 1) o
m

t 5 s 1 1

A8 1
jt A8it, i Þ j (3.33)

[A8is, A8 1
it }q

2 1 5 2 s (q 2 q 2 1) o
n

j 5 i 1 1

A8 1
jt A8js, s Þ t (3.34)

[A8is, A8 1
is }q

2 1 2 s 5 I 1 (q 2 2 s 2 1) o
n

j 5 i 1 1
A8 1

js A8js 1 (q 2 2 2 1) o
m

t 5 s 1 1
A8 1

it A8it

1 (q 2 q 2 1)2 o
n

j 5 i 1 1
o
m

t 5 s 1 1

A8 1
jt A8jt (3.35)

Note again that for m 5 1, Eqs. (3.24)±(3.35) give back the Pusz±

Woronowicz results (Pusz and Woronowicz, 1989; Pusz, 1989).

4. COVARIANT (hh8)-BOSONIC AND (hh8)-FERMIONIC
ALGEBRAS

Let us apply the contraction procedure of Section 2 to the GLq(n) 3
GLq

s (m)-covariant q-bosonic (or q-fermionic) algebras !(1)
q s (n, m) and

!(2)
q s (n, m). We shall successively consider the cases where they are defined

in the {A8 1
is , A8is} basis or in the {A8 1

is , AÄ 8is} one.

Since we now have two commuting copies of GLq(N), we have to

consider two transformation matrices of type (2.5), g 5 ( i eii 1 h e1n, and
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g 5 ( sess 1 h 8e1m. They act on GLq(n) and GLq
s (m), respectively, and depend

upon two parameters h [ h/(q 2 1) and h 8 [ h8/(q s 2 1), which we may

assume independent.
Let us first consider Eqs. (3.4)±(3.6), defining !(1)

q s (n, m) in the

{A8 1
is , A8is} basis, and introduce transformed q-bosonic (or q-fermionic) opera-

tors A9+ 5 A8+g, A9 5 g 2 1A8, where g 5 gg, i.e., gis, jt 5 gijgst. By using

the property R8t
q 5 t R8q t satisfied by (2.2) and a similar one for 58q s , it is

straightforward to show that Eqs. (3.4)±(3.6) become

A9 1
1 A9 1

2 5 s A9 1
2 A9 1

1 ( t R9q 2 1 t ) 59q s (4.1)

A91 A92 5 s R9q ( t 59q 2 s t ) A92 A91 (4.2)

A92 A9 1
1 5 I21 1 s R9t1

q 59t1
q s A9 1

1 A92 (4.3)

Defining now (hh8)-bosonic [or (hh8)-fermionic] operators by

A 1
is [ lim

q ® 1
A9 1

is , Ais [ lim
q ® 1

A9is (4.4)

and taking the q ® 1 limit of Eqs. (4.1)±(4.3), we obtain that together with

I, they generate an algebra !hh8 s (n, m), whose defining relations are

A 1
1 A 1

2 5 s A 1
2 A 1

1 Rh5h8 (4.5)

A1A2 5 s Rh5h8A2A1 (4.6)

A2A
1
1 5 I21 1 s Rt1

h 5t1
h8A

1
1 A2 (4.7)

In deriving the latter, we explicitly used the fact that both Rh and 5h8 are

triangular. Similarly, the transformation (3.12) goes into

w (A+) 5 A+T7, w (A) 5 T 2 17 2 1A (4.8)

where Tij P GLh(n), 7st P GLh8(m), and w leaves Eqs. (4.5)±(4.7) invariant,

while being consistent with the GLh(n) 3 GLh8(m) coalgebra structure, as

given by Eq. (2.7). Hence, !hh8 s (n, m) is a GLh(n) 3 GLh8(m)-covariant
(hh8)-bosonic [or (hh8)-fermionic] algebra.

It is easy to see that the same procedure applied to Eqs. (3.4), (3.5),

and (3.7) defining !(2)
q s (n, m) in the {A8 1

is , A8is} basis leads to the same equa-

tions (4.5)±(4.7) because Rh and 5h8 are triangular. The algebra !hh8 s (n, m)

is therefore the contraction limit of both !(1)
q s (n, m) and !(2)

q s (n, m).

From Eqs. (4.5) and (4.6), it is clear that contrary to what happens in
the q-deformed case, Ais can never be considered as the adjoint of A 1

is . This

comes from the lack of *-structure on GLh (N ).

Equations (4.5)±(4.7) agree with the general form of *-covariant

deformed bosonic (or fermionic) algebras for triangular Hopf algebras *
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which was derived by Fiore (1997). In the present paper, we have established

that they can be obtained in a straightforward way by Alishahiha’ s contraction

technique (Alishahiha, 1995).

By using the explicit expression of Rh given in Eq. (2.8) and a similar one

for 5h8, we can rewrite Eqs. (4.5)±(4.7) in componentwise form as follows:

[A 1
is , A 1

jt } 5 (1 2 s PijPst) {h d j,n(1 2 d s , 2 1 d i,1 d s, t) diA
1
1s A 1

it

1 h8 d t,m (1 2 d s , 2 1 d i, j d s,1) dsA
1
i1A

1
js

2 hh8 d j,n d t,m [1 2 d s , 2 1( d i,1 d s,1

1 d i,1 d s,m 1 d i,n d s,1)] didsA
1
11 A 1

is } (4.9)

[A is, Ajt} 5 2 (1 2 s PijPst){h d j,1(1 2 d s , 2 1 d i,n d s, t)diAnsAit

1 h8 d t,1(1 2 d s , 2 1 d i, j d s,m) dsAim Ajs

1 hh8 d j,1 d t,1 [1 2 d s , 2 1( d i,1 d s,m (4.10)

1 d i,n d s,1 1 d i,n d s,m)] didsAnmA is}

[A is, A 1
jt } 5 d i, j d s, t(I 1 s hh8didsA

1
11 Anm)

1 s h d i, jdi[ A 1
1t Ans 1 h8 d s,1 d t,m( 2 B1n 1 h8A 1

11Anm)]

1 s h8 d s, t ds[A
1
j1Aim 1 h d i,1 d j,n( 2 @@@1m 1 h A 1

11 Anm)]

1 s h d i,1 d j,n ( 2 @@@ts 1 h A 1
1tAns) 1 s h8 d s,1 d t,m( 2 Bji 1 h8A 1

j1 Aim)

1 s hh8 d i,1 d j,n d s,1 d t,m(D 2 h B1n 2 h8@@@1m 1 hh8 A 1
11 Anm) (4.11)

where

di 5 2 2 d i,1 2 d i,n, ds 5 2 2 d s,1 2 d s,m (4.12)

Bij 5 o
u

duA
1
iuAju, @@@st 5 o

k
dkA

1
ksAkt,

D 5 o
ku

dkduA
1
kuAku (4.13)

and P ij (resp. Pst) is the permutation operator acting on i, j (resp. s, t) indices.

In the m 5 1 case, Eqs. (4.9)±(4.11) assume a much simpler form:

[A 1
i , A 1

j } 5 (1 2 s P ij) [h d j,n(1 2 d s , 2 1 d i,1) di A
1
1 A 1

i ] (4.14)

[Ai , Aj} 5 2 (1 2 s P ij)[h d j,1(1 2 d s , 2 1 d i,n)diAn Ai] (4.15)
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[Ai , A 1
j } 5 d i, j(I 1 s hdiA

1
1 An)

1 s h d i,1 d j,n 1 2 o
k

dkA
1
k Ak 1 hA 1

1 An 2 (4.16)

Let us next consider Eqs. (3.4), (3.8), and (3.9), defining !(1)
q s (n, m) in

the {A8 1
is , AÄ 8is} basis. Introducing transformed q-bosonic (or q-fermionic)

creation operators A9+ 5 A8+g as before, and accordingly AÄ 9 5 AÄ 8g, we

notice that compatibility of the AÄ 9 and A9 definitions with AÄ 9 5 A9C9, where

C9 5 C 9q#9q s , leads to C 9q 5 gtC8qg, and #9q s 5 gt#8q s g. A simple calculation

shows that for n . 1

C 9q 5 o
i

( 2 1)n 2 iq 2 (n 2 2 i 1 1)/2eii8 1 h (q(n 2 1)/2

1 ( 2 1)n 2 1q 2 (n 2 1)/2)enn (4.17)

which can be rewritten as

C 9q 5 o
i

( 2 1)iq 2 (n 2 2i 2 1)/2eii8 1 h(q(n 2 3)/2 1 q(n 2 5)/2 1 ? ? ? 1 q 2 (n 2 1)/2)enn

if n 5 2, 4, . . .

5 o
i

( 2 1)i 2 1q 2 (n 2 2i 1 1)/2eii8 1 h (q(n 2 1)/2 1 q 2 (n 2 1)/2)enn

if n 5 3, 5, . . . (4.18)

We conclude that except for the trivial n 5 1 case, wherein we may set

C8q 5 C 9q 5 Ch 5 1, a contraction limit of C 9q only exists for even n values,
and is given by

Ch [ lim
q ® 1

C 9q 5 o
i

( 2 1)ieii8 1 (n 2 1)henn (4.19)

Similarly, for even m values,

#h8 [ lim
q ® 1

#9q s 5 o
s

( 2 1)sess8 1 (m 2 1)h8emm (4.20)

Restricting the range of n, m values to {1, 2, 4, 6, . . .}, we obtain that

after transformation, Eqs. (3.4), (3.8), and (3.9) contract into

A 1
1 A 1

2 5 s A 1
2 A 1

1 Rh5h8 (4.21)

AÄ 1AÄ 2 5 s AÄ 2AÄ 1Rh5h8 (4.22)

AÄ 2A
1
1 5 C12 1 s A 1

1 AÄ 2 RÄ 2 1
h 5Ä 2 1

h8 (4.23)
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where C 5 Ch#h8,

RÄ h [ lim
q ® 1

(g 2 1 ^ g 2 1)RÄ 8q(g ^ g)

5 C 2 1
h,1(R 2 1

h )t1Ch,1 5 C 2 1
h,2 (Rt2

h ) 2 1Ch,2

5 o
ij

eii ^ ejj 2 h o
i

( 2 1)idi (e1i ^ e1i8 1 ein ^ ei8n)

1 (2n 2 3)h2e1n ^ e1n (4.24)

and 5Ä h8 is defined in the same way.

Again the same procedure applied to Eqs. (3.4), (3.8), and (3.10),

defining !(2)
q s (n, m) in the {A8 1

is , AÄ 8is} basis, leads to Eqs. (4.21) ±(4.23),
already obtained for !(1)

q s (n, m). We conclude that for n, m P {1, 2, 4, 6,

. . .}, such equations yield another form of the GLh(n) 3 GLh8(m)-covariant

(hh8)-bosonic [or (hh8)-fermionic] algebra !hh8 s (n, m), defined in Eqs. (4.5)±

(4.7) for arbitrary n, m values. The counterpart of transformation (4.8) is now

w (A+) 5 A+T7, w (AÄ ) 5 AÄ TÄ 7Ä (4.25)

where Tij P GLh(n), 7st P GLh8(m), TÄ 5 C 2 1
h (T 2 1)tCh, and 7Ä 5

# 2 1
h8 (7 2 1)t#h8. However, for n and/or m P {3, 5, 7, . . .}, the contraction

procedure does not preserve the equivalence between the two forms of

!(1)
q s (n, m) or !(2)

q s (n, m), corresponding to the {A8 1
is , A8is} and {A8 1

is , AÄ 8is}
bases, respectively, since only the former has a limit. It should be stressed

that such results are entirely new, since Fiore (1997) did not consider any

AÄ 8is operators.
In componentwise form, Eq. (4.21) becomes Eq. (4.9), Eq. (4.22)

assumes a similar form, while Eq. (4.23) leads to the following relation:

[AÄ is, A 1
jt } 5 d i8, j d s8, t( 2 1)i 1 s (I 1 s hh8 didsA

1
11AÄ 11)

2 d i8, j( 2 1)i{ s hdiA
1
1t AÄ 1s 1 h8 d s,m d t,m[(m 2 1)I

1 s hdiBÄ 11 1 s (2m 2 3)hh8di A 1
11AÄ 11]}

2 d s8, t( 2 1)s{ s h8dsA
1
j1AÄ i1 1 h d i,n d j,n[(n 2 1)I

1 s h8ds@@@Ä 11 1 s (2n 2 3)hh8 dsA
1
11AÄ 11]}

1 s h d i,n d j,n[@@@Ä ts 1 (2n 2 3)hA 1
1tAÄ 1s]

1 s h8 d s,m d t,m [BÄ ji 1 (2m 2 3)h8A 1
j1AÄ i1]

1 hh8 d i,n d j,n d s,m d t,m [(n 2 1)(m 2 1)I 1 s DÄ 1 s (2n 2 3)hBÄ 11

1 s (2m 2 3)h8@@@Ä 11 1 s (2n 2 3)(2m 2 3)hh8A 1
11AÄ 11] (4.26)
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where

BÄ ij 5 o
u

( 2 1)uduA
1
iuAÄ ju8,

@@@Ä st 5 o
k

( 2 1)kdkA
1
ksAÄ k8t, (4.27)

DÄ 5 o
ku

( 2 1)k 1 udkduA
1
kuAÄ k8u8

In the m 5 1 case, Eq. (4.26) assumes the simpler form

[AÄ i , A 1
j } 5 d i8, j( 2 1)i 1 1(I 1 s hdi A

1
1 AÄ 1) 1 h d i,n d j,n[(n 2 1)I

1 s o
k

( 2 1)kdkA
1
k AÄ k8 1 s (2n 2 3)hA 1

1 AÄ 1] (4.28)

where AÄ 5 ACh.

In the next section, by making explicit use of the Uh(sl(2)) CGC deter-

mined by Van der Jeugt (1998), we show that whenever n 5 2 and m 5 1

or 2, the (anti)commutators (4.9) and (4.26) can be rewritten in coupled form

as in the q-deformed case.

5. SPECIAL CASES n 5 2, m 5 1, AND n 5 m 5 2

Let us first consider the n 5 2, m 5 1 case, wherein

Rh 5 1
1 h 2 h h2

0 1 0 h

0 0 1 2 h

0 0 0 1 2 , Ch 5 1 0 2 1

1 h 2 , 5h8 5 #h8 5 1

(5.1)

From Eqs. (4.14) ±(4.16), and (4.28), it follows that the defining relations

of the GLh(2)-covariant h-bosonic algebra !h 1 (2,1) are given by

[A 1
1 , A 1

2 ] 5 h(A 1
1 )2, [A1, A2] 5 hA2

2 (5.2)

[A2, A 1
1 ] 5 0, [A1, A 1

2 ] 5 h( 2 A 1
1 A1 2 A 1

2 A2 1 hA 1
1 A2 (5.3)

[A1, A 1
1 ] 5 [A2, A 1

2 ] 5 I 1 hA 1
1 A2 (5.4)

in the {A 1
1 , A 1

2 , A1, A2} basis, and by

[A 1
1 , A 1

2 ] 5 h(A 1
1 )2, [AÄ 1, AÄ 2] 5 hAÄ 21 (5.5)

[AÄ 1, A 1
1 ] 5 0, [AÄ 2, A 1

2 ] 5 h(I 2 A 1
1 AÄ 2 1 A 1

2 AÄ 1 1 hA 1
1 AÄ 1) (5.6)
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[AÄ 1, A 1
2 ] 5 2 [AÄ 2, A 1

1 ] 5 I 1 hA 1
1 AÄ 1 (5.7)

in the {A 1
1 , A 1

2 , AÄ 1, AÄ 2} basis.

Similarly, for the h-fermionic algebra !h 2 (2, 1), we obtain

{A 1
1 , A 1

1 } 5 {A 1
1 , A 1

2 } 5 0, {A 1
2 , A 1

2 } 5 2hA 1
1 A 1

2 (5.8)

{A1, A1} 5 2hA1A2, {A1, A2} 5 {A2, A2} 5 0 (5.9)

{A2, A 1
1 } 5 0, {A1, A 1

2 } 5 h(A 1
1 A1 1 A 1

2 A2 2 hA 1
1 A2) (5.10)

{A1, A 1
1 } 5 {A2, A 1

2 } 5 I 2 hA 1
1 A2 (5.11)

and

{A 1
1 , A 1

1 } 5 {A 1
1 , A 1

2 } 5 0, {A 1
2 , A 1

2 } 5 2hA 1
1 A 1

2 (5.12)

{AÄ 1, AÄ 1} 5 {AÄ 1, AÄ 2} 5 0, {AÄ 2, AÄ 2} 5 2hAÄ 1AÄ 2 (5.13)

{AÄ 1, A 1
1 } 5 0, {AÄ 2, A 1

2 } 5 h(I 1 A 1
1 AÄ 2 2 A 1

2 AÄ 1 2 hA 1
1 AÄ 1) (5.14)

{AÄ 1, A 1
2 } 5 2 {AÄ 2, A 1

1 } 5 I 2 hA 1
1 AÄ 1 (5.15)

respectively.

The operators (A 1
1 , A 1

2 ), and (AÄ 1, AÄ 2) may be considered as the compo-

nents m 5 1/2 and m 5 2 1/2 of ITO of rank 1/2, or spinors, with respect

to the quantum algebra Uh(sl(2)). By using a nonlinear invertible map between

the generators of Uh(sl(2)) and U(sl(2)) (Abdesselam et al., 1996) and consid-

ering the adjoint action of the former on such spinors, Aizawa (1998) recently
realized them in terms of standard bosonic or fermionic operators

a 1
1 , a 1

2 , a1, a2. For the standard form of sl(2) generators

J+ 5 a 1
1 a2, J 2 5 a 1

2 a1, J0 5
1

2
(a 1

1 a1 2 a 1
2 a2) (5.16)

the realizations read2

A 1
1 5 1 1 2

h

2
J+ 2

2 1

a 1
1 , A 1

2 5 1 1 2
h

2
J+ 2 a 1

2 1
h

2
(A 1

1 2 2a 1
1 J0) (5.17)

AÄ 1 5 1 1 2
h

2
J+ 2

2 1

a2 , AÄ 2 5 2 1 1 2
h

2
J+ 2 a1 1

h

2
(AÄ 1 2 2a2J0)(5.18)

2 The realization of sl(2) used in Eqs. (5.19) and (5.20) differs from that considered by Aizawa
(1998). There are also some changes of phase conventions with respect to that reference in
Eqs. (5.17)±(5.20).
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in the h-bosonic case, and

A 1
1 5 a 1

1 , A 1
2 5 a 1

2 2 2ha 1
1 J0 (5.19)

AÄ 1 5 a2 , AÄ 2 5 2 a1 2 2ha2J0 (5.20)

in the h-fermionic one. As expected, the operators (5.17), (5.18) and (5.19),

(5.20) satisfy Eqs. (5.5)±(5.7) and (5.12) ±(5.15), respectively.

Let us now introduce coupled (anti)commutators, defined as in Eq.
(3.14) by

[T j1, U j2]JM 5 [T j1 3 U j2]JM 2 s ( 2 1) e [U j2 3 T j1]JM (5.21)

Here T j1 and U j2 denote two ITOs of rank j1 and j2 with respect to Uh (sl(2)),

respectively, e is defined as in Eqs. (3.16) and (3.17) by e 5 j1 1 j2 2 J, and

[T j1 3 U j2]J
M 5 o

m1m2

^ j1m1, j2m2 ) JM & hT
j1
m1U

j2
m2 (5.22)

where ^ , ) & h denotes a Uh (sl(2)) CGC (Van der Jeugt, 1998). The values of

the latter needed for coupling spinors are given in Table I. By using them,

we can recast Eqs. (5.5)±(5.7) and (5.12)±(5.15) in the compact forms

[A+, A+]00 5 [AÄ , AÄ ]0
0 5 [AÄ , A+]1

M 5 0, [AÄ , A+]00 5 ! 2I (5.23)

and

{A+, A+}1
M 5 {AÄ , AÄ }1

M 5 {AÄ , A+}1
M 5 0, {AÄ , A+}0

0 5 ! 2I (5.24)

respectively.

Let us next consider the n 5 m 5 2 case, wherein 5h8 and #h8 are

defined as Rh and Ch in Eq. (5.1). Relations similar to Eqs. (5.2)±(5.15) can

be easily written. The operators A 1
is (i, s 5 1, 2) and AÄ is (i, s 5 1, 2) may

now be considered as the components of double spinors with respect to Uh

(sl(2)) 3 Uh8 (sl(2)). Defining coupled (anti)commutators by

[T j1j81, U j2j82}JJ8
MM8 5 [T j1j81 3 U j2j82]JJ8

MM8

2 s ( 2 1) e [U j2j82 3 T j1j81]JJ8
MM8 (5.25)

Table I. Values of Uh(sl(2)) CGC ^ 1±2 m1,
1±2 m2 ) JM & h

J 5 M 5 1 J 5 1, M 5 0 J 5 2 M 5 1 J 5 M 5 0

m1 5 m2 5 1/2 1 0 (h/2)2 2 h/ ! 2

m1 5 2 m2 5 1/2 0 1/ ! 2 2 h/2 1/ ! 2

m1 5 2 m2 5 2 1/2 0 1/ ! 2 h/2 2 1/ ! 2

m1 5 m2 5 2 1/2 0 0 1 0
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where e 5 j1 1 j2 2 J 1 j81 1 j82 2 J 8, and

[T j1 j81 3 U j2 j82]JJ8
MM8

5 o
m1m2m8

1
m8

2

^ j1m1, j2m2 ) JM & h ^ j81m
8
1, j82m

8
2 ) J 8M 8 & h8T

j1j81
m1m81U

j2 j82
m2m82 (5.26)

we easily obtain that the double spinors A+ and AÄ satisfy the relations

[A+, A+]10
M0 5 [A+, A+]01

0M8 5 [AÄ , AÄ ]10
M0 5 [AÄ , AÄ ]01

0M8 5 0 (5.27)

[AÄ , A+]JJ8
MM8 5 2 d J,0 d J8,0 d M ,0 d M8,0I (5.28)

and

{A+, A+}11
MM8 5 {A+, A+}00

00 5 {AÄ , AÄ }11
MM8 5 {AÄ , AÄ }00

00 5 0 (5.29)

{AÄ , A+}JJ8
MM8 5 2 d J,0 d J8,0 d M,0 d M8,0I (5.30)

in the (hh8)-bosonic and (hh8)-fermionic cases, respectively.

It is remarkable that Eqs. (5.23) [resp. (5.24)] and (5.27), (5.28) [resp.

(5.29), (5.30)] are formally identical to those for bosonic (resp. fermionic)

ITOs with respect to the Lie algebras sl(2) and sl(2) 3 sl(2), respectively.

Contrary to what happens in the q-bosonic (or q-fermionic) case, where the
(anti)commutators are q-deformed [see Eqs. (3.22) and (3.23)], here all the

dependence upon the deforming parameters h, h8 is contained in the cou-

pling coefficients.

6. CONCLUSION

In the present paper, we showed that the contraction technique previously

used to construct Jordanian deformations of Lie groups from standard ones

(Aghamohammadi et al., 1995; Alishahiha, 1995) can be applied to the

GLq (n) 3 GLq(m)-covariant q-bosonic [or GLq(n) 3 GLq
2 1(m)-covariant q-

fermionic] algebras !( a )
q 6 (n, m), a 5 1, 2 (Quesne, 1993, 1994; Fiore, 1998)

to yield GLh (n) 3 GLh8 (m)-covariant (hh8)-bosonic [or (hh8)-fermionic]
algebras !hh8 6 (n, m). In this process, the arbitrariness present in the q-

deformed case disappears, as the algebras !(1)
q 6 (n, m) and !(2)

q 6 (n, m) have the

same contraction limit !hh8 6 (n, m).

When using a basis {A8 1
is , A8is} of !( a )

q 6 (n, m), wherein the annihilation

operators A8is are contragredient to the creation ones A8 1
is , this contraction

procedure can be carried out for any n, m values. The resulting defining
relations of !hh8 6 (n, m) were written in the contracted basis {A 1

is , Ais}, both

in compact form in terms of the defining Rh and 5h8-matrices of GLh(n) and

GLh8(m), respectively, and in componentwise form. They may be considered

as a special case of the defining relations of *-covariant deformed bosonic
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(or fermionic) algebras for triangular Hopf algebras *, recently obtained by

Fiore (1997) by another procedure.

When using instead a basis {A8 1
is , AÄ 8is} of !( a )

q 6 (n, m), wherein the anni-
hilation operators AÄ 8is are ITOs with respect to the quantum algebra

Uq(gl(n)) 3 Uq
6 1(gl(m)), we obtained some new and interesting results. We

established that in such a case a contraction limit only exists whenever n,

m P {1, 2, 4, 6, . . .}, hence showing that for n and/or m P {3, 5, 7, . . .},

the contraction procedure does not preserve the equivalence between the two

forms of !( a )
q 6 (n, m), corresponding to the {A8 1

is , A8is} and {A8 1
is , AÄ 8is} bases.

When a limit does exist, the defining relations of !hh8 6 (n, m) were written

in the contracted basis {A 1
is , AÄ is} both in compact form in terms of Rh and

5h8 and in componentwise form.

Such a basis is essential to express the defining relations of !hh8 6 (n,

m) in another compact form in terms of coupled (anti)commutators, thereby

enhancing the transformation properties of the generators under the quantum
algebra dual to GLh(n) 3 GLh8(m). We proved this point in the n 5 2, m 5
1, and n 5 m 5 2 cases, where the dual quantum algebras are known,

and the Uh(sl(2)) CGC determined by Van der Jeugt (1998) can be used.

Furthermore , we checked that the h-bosonic and h-fermionic ITOs of rank

1/2 with respect to Uh(sl(2)) constructed by Aizawa (1998) satisfy the defining
relations of !h 6 (2, 1). From the examples considered, we concluded that the

algebras !hh8 6 (n, m) are much closer to the standard Heisenberg (or Clifford)

algebras ! 6 (n, m) than the q-deformed ones, !( a )
q 6 (n, m). This may be an

advantage in some physical applications.
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